

LEOs, GEOs and MEOs: Learn the Pros and Cons of Each

Description

LEOs, GEOs and MEOs: Learn the Pros and Cons of Each

Technology in the connectivity space is evolving at a rapid pace, and it can be hard to keep up. Different satellite technologies like LEOs, GEOs and MEOs, for example, are better used in certain circumstances than others. Letâ??s explore the satellite options below.

Satellite terminology explained

1Low Earth Orbit (LEO) satellites

o 2Geostationary Earth Orbit/Geosynchronous Equatorial Orbit (GEO) satellites

o 3Medium Earth Orbit (MEO) satellites

Compare your options

	LEO Satellites	GEO Satellites	MEO Satellites
Altitude	160-2,000 kilometres	35,786 kilometres	2,000-35,786 kilometres
Round-trip latency	Low (around 20-50 ms)	High (around 500 ms)	Moderate (around 100- 150 ms)
Coverage	Regional coverage with constellation	Regional coverage (spot beam)	Regional coverage
Constellation Size	Large (hundreds to	Small (typically fewer	Moderate (tens to
(number of satellites	thousands)	than 10)	hundreds)
clustered together)			
Deployment Cost	High	Moderate to high	Moderate to high
Data Transfer Rates	High	High	High
Reliability	Dependent on constellation management	Generally reliable	Generally reliable
Better for phone or internet	Suitable for both	Suitable primarily for internet	Suitable for both

Advantages		
D'a a basata sa a		
Disadvantages		

- Low latency
- High data transfer rates
- Less susceptibility to atmospheric interference
- High deployment cost
- Need for large constellation for continuous coverage
- Potential for signal interference

- Wide coverage
- Stable signal strength
- Fewer satellites required
- High latency
- Limited coverage area
- Signal degradation at higher latitudes

- Balanced latency and coverage
- Relatively lower deployment cost
- Improved latency compared to GEO
- Higher latency than LEO
- Less global coverage than LEO
- Higher deployment cost than LEO

Other popular articles

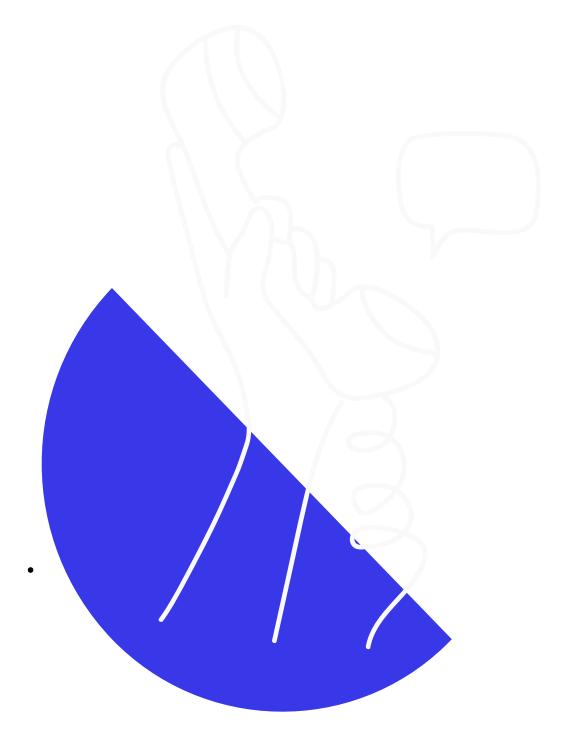
News
 November 4, 2024

Telstra 3G shutdown is now complete

News
 October 25, 2024

Phones using the 3G network to call triple zero will be disconnected on 28 October 2024

News
 October 25, 2024


NBN Co accelerating higher speed tiers in September 2025

GuidesOctober 17, 2024

Connectivity definitions

Back to resources

Didnâ??t find the answers you were after?

Chat to us on our hotline with one of our team members and letâ??s get the conversation started. If we donâ??t answer, weâ??ll get back to you in no time at all.

1300 081 029

Category

1. Guides

Date 28/11/2025 **Date Created** 12/03/2024